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ABSTRACT 

The objective of this study was to evaluate the feasibility of producing sustainable 

concrete materials for rigid pavement construction using high volumes of recycled materials. The 

goal was to replace 50% of all solid materials in the concrete with recycled materials and 

industrial by-products. This included the replacement of cement with at least 50% supplementary 

cementitious materials (SCMs) and aggregate with 50% recycled concrete aggregate (RCA). 

Nine optimized mixtures from the first phase of the project that exhibited satisfactory 

performance were selected for the construction of single layer and two-lift rigid pavement 

systems. Life cycle cost assessment indicated that sustainable concrete with optimal SCMs and 

RCA can lead to cost savings of 17.6% of agency costs, 12.1% of user cost, 12.1% of social cost, 

and 17.5% of total life cycle cost. The development of a database and analysis using artificial 

intelligence was performed to quantify the properties of concrete as a function of RCA 

characteristics. Test results obtained through the case study indicated that the reduction in the 

modulus of elasticity (MOE) of pavement concrete can be limited to 10% when the coarse RCA 

has a water absorption lower than 2.5%, Los Angeles (LA) abrasion less than 23%, or oven dry 

specific gravity higher than 156 lb/ft3 (2500 kg/m3) for concrete made with 100% RCA 

replacement rate. The water absorption, specific gravity, and LA abrasion mass loss of RCA 

were found to categorize the RCA quality and resulting engineering properties of concrete made 

with RCA. The selection of RCA with a lower water absorption and LA abrasion mass loss and a 

higher oven dry specific gravity corresponded to a higher quality of RCA that can produce 

concrete with greater mechanical properties. 
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1. INTRODUCTION 

The decrease in natural resources and the growing problems associated with waste 

management, ecological hazards, and landfill limitations, as well as the increase in travel 

distance between natural resources and consumption markets support the idea of using recycled 

wastes for new concrete production (Padmini et al., 2009). Furthermore, the reduction in the 

carbon footprint of the most commonly used construction material, concrete, is a key factor to 

decrease the total greenhouse gas emissions produced by the construction industry (Mclntyre et 

al., 2009). 

Interest in environmentally friendly concrete for pavement construction has grown in 

recent years. Candidate technologies to improve the sustainability of pavement concrete include 

the use of supplementary cementitious materials (SCMs) as a partial replacement for portland 

cement, the incorporation of recycled materials in concrete production, in particular recycled 

concrete aggregate (RCA), as well as the use of highly durable and crack-resistant materials. Due 

to the increasing rate of demolition, it is essential to reuse demolition wastes to conserve non-

renewable natural resources, including aggregates for concrete. Given the fact that fine and 

coarse aggregates occupy about 30% and 40% of the concrete volume in rigid pavement, 

respectively, partial replacement of virgin aggregate with RCA can preserve natural resources 

and decrease the amount of disposals in landfills. Given the varied characteristics of RCA when 

compared to virgin aggregate sources, there still exists a conservative approach that limits the 

use of RCA in field implementations (Surya et al., 2013). Therefore, RCA is mostly being used 

in granular bases, embankments, sound barriers, and fills, etc. (Kim et al., 2013, Gabr and 

Cameron 2012).  
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Due to the economic and environmental merits of recycled materials, research has been 

undertaken to investigate the effect of RCA on the properties of concrete designated for 

pavement applications at Missouri University of Science and Technology (Missouri S&T) in 

collaboration with the REsearch on Concrete Applications for Sustainable Transportation (RE-

CAST) University Transportation Center (UTC) and the Missouri Department of Transportation 

(MoDOT). The project involves mixture design and field implementation of sustainable concrete 

materials made with high volumes of recycled materials for pavement applications. To date, field 

implementation was carried out by other consortium universities. The output of the project can 

endorse the development of guidelines for the design and construction of sustainable pavement 

applications.  

The present report is composed of the following sections: 

1. Literature review. 

2. Laboratory investigation: summary of main findings from Phase I. 

3. Field implementation. 

4. Instrumentation. 

5. Life cycle cost analysis - summary of findings from Phase I produced by the RE-CAST 

partner, Professor Kaan Ozbay, at New York University. 

6. Artificial intelligence for investigating the effect of RCA on concrete properties - 

summary of the development of an extensive database and analysis of the effect of RCA 

physical properties on the modulus of elasticity (MOE) of concrete. This work was 

conducted in collaboration with Professor Donald C. Wunsch from the Electrical 

Engineering Department at Missouri S&T. 

  

http://recast.mst.edu/
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2. LITERATURE REVIEW 

A review of the literature on the use of RCA in concrete for the transportation 

infrastructure sector demonstrates the need to quantify the effect of using high-volume RCA on 

properties of pavement concrete. Of great interest was the use of at least 50% recycled materials 

in the construction of single-layer rigid pavement and the use of more than 50% recycled 

materials in two-lift rigid pavement systems. 

2.1 USE OF RCA IN RIGID PAVEMENT CONSTRUCTION 

Most of the applications of RCA in the U.S. involve the use of RCA as aggregate in base 

and subbase layers of pavement construction (FHWA 2004). Other applications include cement-

treated base, backfill, embankment, stabilization, erosion control (riprap), and landscaping 

(ACPA 2009). According to a survey conducted by Garber et al. (2011), the use of RCA in new 

concrete production is rather advanced in European and East Asian countries. For example, in 

Finland, 10% of the RCA is used in new concrete mixtures or in cement-treated bases (Englesen 

et al., 2005). In Austria, RCA is mainly used for the production of the bottom layer in two-lift 

concrete pavement applications; however, it is also allowed for use in new concrete production 

for curbs and sidewalks.  

The use of RCA in the construction of rigid pavements started in the early 1970s, and 

most of these pavements have performed well. However, several states in the U.S. stopped using 

RCA in pavement construction due to poor performance in some cases (Cuttell et al., 1997), 

which was associated with: (1) higher shrinkage and thermal deformation of RCA concrete, 

resulting in distress in mid-panel cracks of jointed reinforced concrete pavement (JRCP); (2) 

inferior load transfer along with faulting in non-doweled sections due to reduced aggregate 
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interlock; (3) durability issues, including delayed D-cracking due to use of RCA obtained from 

crushing of old concrete proportioned with aggregates that are highly susceptible to frost 

damage. 

Cuttel et al. (1997) investigated the use of RCA for construction of single layer concrete 

pavements in the 1970s and 1980s in Connecticut (one section), Kansas (one section), Minnesota 

(four sections), Wisconsin (two sections), and Wyoming (one section). Jointed plain concrete 

pavements (JPCP), continuously reinforced concrete pavements (CRCP), and jointed reinforced 

concrete pavements (JRCPs) were investigated. Joint spacing ranged from 12 to 39 ft (3.7 to 12 

m) and slab thicknesses varied between 7.9 and 11.0 in. (200 and 280 mm). The water-to-

cementitious materials ratio (w/cm) of the investigated concrete mixtures ranged from 0.38 to 

0.47. Based on core sample results, comparable compressive strength and splitting tensile 

strength values were found for the concrete sections made with or without RCA (Cuttel et al., 

1997). The modulus of elasticity (MOE) results proved to be up to 18% lower than those of the 

control concrete. Up to 23% increase in coefficient of thermal expansion (CTE) was observed for 

the RCA-made sections. In addition, investigated sections had similar responses to falling weight 

deflection tests. However, inferior load transfer efficiency was observed in the case of RCA 

sections (Cuttel et al., 1997). The investigation was followed by a second survey in 2006 on the 

same sections that were 20- to 22-year old. Based on the field measurements and inspections, the 

authors reported an increase in transverse cracking and transverse joint spalling, increase in 

length of deteriorated transverse cracks, and decrease (up to 0.8 points out of 5.0) in present 

serviceability rating (PSR) of the pavement made with RCA. 

Salas et al. (2010) used up to 100% RCA for producing concrete for rigid pavement 

applications as a part of the O’Hare Airport Modernization Project using the two-stage mixing 
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approach developed by Tam et al. (2005). Compared to concrete made with virgin aggregate, 

concrete prepared with RCA exhibited similar workability, lower bleeding and segregation, 

similar or higher compressive strength, and similar shrinkage at early age.  

Choi and Won (2009) studied the performance of a CRCP highway section made with 

totally fine and coarse RCA mixtures located in Houston, TX. Based on core testing results, it 

was observed that the average compressive strength decreased due to the use of RCA. The MOE 

of the RCA concrete was lower than that of the virgin aggregate mixture. It is interesting to note 

that the CTE of the RCA concrete was similar to that of the virgin aggregate mixtures. The rapid 

chloride-ion permeability results of the RCA concrete were surprisingly lower than that of the 

virgin aggregate concrete and was rated as “very low” based on the ASTM C1202 (2012). The 

sulfate content of the RCA-made and the virgin aggregate mixtures were found to be similar. It 

was also reported that the RCA sections had overall good performance after more than 10 years 

of service life with no structural distress. The transverse crack distributions were also found to be 

similar to that of the virgin limestone mixtures (Choi and Won 2009). 

2.2 RESEARCH NEED 

In general, given the variable properties of RCA particles compared to the virgin 

aggregate sources, the mechanical properties and durability of concrete made with RCA may be 

lower than those of the conventional concrete made without any RCA. However, the degree of 

variation in results depends on the concrete composition and source of RCA. Laboratory 

screening is therefore required for the selection of RCA for the use in construction projects. 

Furthermore, a comprehensive test matrix is required to investigate the properties of concrete 

mixtures made with RCA for sustainable pavement construction. Based on the results published 
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in the literature, as those summarized in the survey conducted in Phase I of this project, the 

following areas warrant further investigation: 

• Key physical properties, including oven-dry specific gravity, water absorption, Los 

Angeles (LA) abrasion, presence of deleterious materials and degree of ionic 

contamination (chloride ions, sulfates, etc.) should be considered in categorizing RCA for 

various applications and environmental conditions. 

• The content and quality of the selected RCA can reduce workability, specific gravity, 

mechanical properties, including compressive strength, splitting tensile strength, flexural 

strength, and MOE. 

• Drying shrinkage can be significantly affected by the use of RCA. A greater content of 

RCA with lower quality can lead to higher shrinkage. 

• Frost durability can be affected by the use of RCA that is produced from non-air 

entrained concrete or low-quality RCA. Carbonation, electrical resistivity, chloride ion 

permeability can also be affected by the use of RCA with high water absorption and/or 

contaminated with chloride ions.  
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3. LABORATORY INVESTIGATION 

3.1 SUMMARY OF FINDINGS FROM PHASE I 

A comprehensive laboratory investigation program was undertaken in the first phase of 

the project. Commercially produced RCA was used for developing and testing concrete mixtures, 

designated for single and double lift pavement constructions. Mixtures with desirable 

performance were selected. A summary of findings is provided below. The first phase of the 

laboratory investigation involved the evaluation of the properties of five sources of fine RCA and 

seven sources of coarse RCA for use in concrete production, as summarized in Table 1.  

The aim of the research presented in this report was to evaluate the feasibility of 

producing sustainable concrete materials for rigid pavement construction using high volume of 

recycled materials. The goal was to replace 50% of the solids with recycled materials and 

industrial by-products. This included the use of at least 50% SCMs as cement replacement, as 

well as the incorporation of 50% RCA as a replacement for virgin aggregate. 
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Table 1 - Physical properties of investigated RCA sources 

Aggregate Specific gravity Dry rodded unit 
weight (pcf) Absorption (%) Los Angeles abrasion 

(%) Source 

Fine RCA I 2.41 - 6.8 - Lambert Airport, 
I 

Fine RCA II 2.11 - 7.33 - Lambert Airport, 
II 

Fine RCA III 2.10 - 9.29 - Commercial 

Fine RCA IV 2.05 - 10.47 - Commercial 

Fine RCA V 1.90 - 14.19 - Commercial 

Coarse RCA I 2.38 91.0 4.2 33 Lambert Airport, 
I 

Coarse RCA II 2.35 90.2 4.46 33 Lambert Airport, 
II 

Coarse RCA III 2.21 86.1 6.66 43 Commercial 

Coarse RCA IV Rejected in visual 
inspection 

Rejected in visual 
inspection 

Rejected in visual 
inspection 

Rejected in visual 
inspection Commercial 

Coarse RCA V 2.32 88.4 4.99 35 Commercial 

Coarse RCA VI 2.15 85.0 8.17 43 Commercial 

Coarse RCA VII 2.35 89.7 4.56 41 Laboratory 
produced 
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Concrete equivalent mortar (CEM) based on MoDOT’s portland cement concrete 

pavement (PCCP) mixture design was employed to optimize the binder composition of 

sustainable concrete pavement. The mixture designs of the base concrete and corresponding 

CEM are given in Table 2. 

Table 2 - Mixture composition of base concrete and corresponding CEM mixtures 
(lb/yd3) 

Mixture Cementitious 
materials w/cm Water 

content Sand Coarse 
aggregate 

Coarse-equivalent 
sand 

MoDOT 
PCCP 545 0.40 218 1265 1890 - 

CEM 990 0.40 396 2275 - 305 

A multi-criteria decision-making method was employed for the optimization of binary 

and ternary binder systems. The investigated properties and corresponding importance weights 

assigned to the various parameters were: 

 Compressive strength, importance weight of 3; 

 Drying shrinkage, importance weight of 5; 

 Carbon dioxide emission, importance weight of 3; 

 Cost, importance weight of 5. 

In addition to the reference binder employed by the MoDOT (75% Type I cement + 25% 

Class C fly ash), two ternary binders were optimized for the concrete investigation: (1) a ternary 

blend of 35% class C fly ash + 15% ground granulated blast furnace slag; and (2) a ternary blend 

of 35% class C fly ash + 15% glass powder. 

The investigation of concrete performance included the evaluation of fresh properties, 

mechanical properties, and shrinkage of several concrete mixtures made with different fine and 
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coarse RCA contents, as summarized in Table 3. The following scenarios were considered for 

concrete production: 

 Sustainable concrete for single layer rigid pavement; 

 Sustainable concrete for two-lift concrete pavement (2LCP). 

The 2LCP systems are composed of two wet-on-wet layers of concrete. Given the 

coverage provided by the high-quality top layer, a mixture incorporating high-volume recycled 

materials can be incorporated for the bottom lift in the 2LCP systems. 

The optimized mixtures developed 28-d compressive strengths ranging from 4,600 to 

7,100 psi (31.7 to 49.0 MPa) and 91-d compressive strengths of 5,900 to 8,600 psi (40.7 to 59.3 

MPa). The investigated mixtures had flexural strengths higher than 600 psi (4.15 MPa) at 28 d, 

except for the mixture made with 70% of coarse RCA and 15% of fine RCA (70C15F).  

The MOE values ranged from 4.1 to 6.2 ksi (28.3 to 42.7 GPa) and 4.7 to 6.7 ksi (32.4 to 

46.2 GPa) at 28 and 56 d, respectively. Increasing the coarse and fine RCA contents to values 

higher than 60% and 30%, respectively, reduced the MOE significantly (up to 30%). However, 

the use of proper mixture proportioning and binder composition made it possible to maintain the 

minimum desired MOE. 

Using the optimized binder composition incorporating 35% Class C fly ash and 15% slag 

cement reduced the 150-d drying shrinkage of mixtures cast with 50% coarse RCA and 15% fine 

RCA to less than 350 to 500 µε. However, the increase in fine RCA content from 15% to 40% 

resulted in greater shrinkage values of up to 650 µε. Decreasing the w/cm from 0.40 to 0.37 was 

effective in reducing shrinkage of mixtures with 50% RCA content (450 µε at 150 days). All 

mixtures proportioned with the optimized binder made with 35% Class C fly ash and 15% slag 

cement and w/cm of 0.37 and 0.40 developed adequate electrical resistivity, with values ranging 
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from 27 to 50 kΩ·cm at 90 d, compared to 19 kΩ·cm for the reference PCCP mixture. Table 4 

offers a summary of key mechanical properties obtained from testing of all the investigated 

concrete mixtures. 

Table 3 - Test matrix for concrete optimization 

No. Mixture Concrete type C-RCA (%) F-RCA (%) w/cm Binder type 

1 MoDOT PCCP Top layer 0 0 0.40 25% FA-C 

2 Opt. Binder Top layer 0 0 0.40 35%FA-C+15%SL 

3 30C-GP-37 Top layer 30 0 0.37 35%FA-C+15%GP 

4 30C-37 Top layer 30 0 0.37 35%FA-C+15%SL 

5 30C Top layer 30 0 0.40 35%FA-C+15%SL 

6 30C15F-37 
Top layer 

Single layer 
30 15 0.37 35%FA-C+15%SL 

7 30C15F 
Top layer 

Single layer 
30 15 0.40 35%FA-C+15%SL 

8 40C15F Single layer 40 15 0.40 35%FA-C+15%SL 

9 50C-37 Single layer 50 0 0.37 35%FA-C+15%SL 

10 50C Single layer 50 0 0.40 35%FA-C+15%SL 

11 50C15F-37 Single layer 50 15 037 35%FA-C+15%SL 

12 50C15F Single layer 50 15 0.40 35%FA-C+15%SL 

13 50C30F 
Bottom layer 

Single layer 
50 30 0.40 

35%FA-C+15%SL 

14 50C40F Bottom layer 50 40 0.40 35%FA-C+15%SL 

15 60C30F Bottom layer 60 30 0.40 35%FA-C+15%SL 

16 70C-37 Bottom layer 70 0 0.37 35%FA-C+15%SL 

17 70C Bottom layer 70 0 0.40 35%FA-C+15%SL 

18 70C15F Bottom layer 70 15 0.40 35%FA-C+15%SL 

19 70C30F Bottom layer 70 30 0.40 35%FA-C+15%SL 
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Table 4 - Mechanical properties of investigated mixtures 

No. Mixture Compressive 
strength (psi) 
1 d 

Compressive 
strength (psi) 
28 d 

Compressive 
strength (psi) 
91 d 

Splitting 
tensile 
strength 
(psi) 
28 d 

Splitting 
tensile 
strength 
(psi) 
56 d 

Flexural 
strength 
(psi) 
28 d 

Flexural 
strength 
(psi) 
56 d 

Modulus 
of 
elasticity 
(ksi) 
28 d 

Modulus of 
elasticity (ksi) 
56 d 

1 MoDOT 
PCCP 2,180 5,590 6,750 460 500 710 700 6,200 5,915 

2 Opt. Binder 1,240 6,020 7,330 400 470 650 770 5,850 6,415 

3 30C-GP-37 950 7,110 8,850 390 440 750 920 6,225 6,725 

4 30C-37 1,820 6,380 8,630 490 490 810 780 6,125 6,200 

5 30C 1,240 5,800 6,600 370 500 700 720 5,400 5,570 

6 30C15F-37 1,670 7,110 8,130 440 460 750 760 5,950 6,750 

7 30C15F 1,020 5,370 6,650 390 490 660 630 5,085 4,925 

8 40C15F 950 4,570 5,880 340 450 610 710 4,425 4,765 

9 50C-37 1,090 6,820 7,910 430 420 730 750 5,500 5,850 

10 50C 1,240 5,880 6,960 420 370 720 770 5,200 5,415 

11 50C15F-37 870 6,020 7,110 410 420 720 740 5,250 5,450 

12 50C15F 1,160 5,590 5,950 390 400 600 730 4,900 5,165 

13 50C30F 1,020 4,640 6,310 450 420 630 720 4,115 4,915 

14 50C40F 1,020 4,560 6,020 320 370 680 640 4,115 4,785 

15 60C30F 1,160 5,380 6,240 350 340 680 610 4,550 4,915 

16 70C-37 870 6,750 7,690 440 440 730 760 5,475 5,500 

17 70C 1,090 5,300 6,460 310 380 640 690 4,767 4,900 

18 70C15F 960 5,080 6,460 420 390 550 580 4,200 4,735 

19 70C30F 1,240 5,370 6,240 420 420 690 730 4,615 4,950 
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The test results were analyzed, and selected concrete mixtures were further investigated 

for durability, including resistance to freezing and thawing, de-icing salt scaling, abrasion 

resistance, and sorptivity. Table 5 summarizes the durability results of concrete mixtures that 

exhibited satisfactory mechanical properties and shrinkage characteristics. 

Table 5 - Durability of investigated mixtures 

No. Mixture Frost 
durability 
factor (%) 
ASTM 
C666, A 

Scaling 
resistance 
rating 
ASTM 
C672 

Mass loss 
due to 
scaling 
(g/m2) 

Abrasion 
mass loss 
(g) 

Initial 
sorptivity 
(mm/s0.5) 

Secondary 
sorptivity 
(mm/s0.5) 

1 
MoDOT 

PCCP 
95.6 1 100 1.2 2.23 E-6 8.9 E-7 

2 Opt. binder 92.5 3 735 1.2 1.49 E-6 5.5 E-7 

3 30C-GP-37 88.8 4 1,230 0.4 0.95E -6 3.5 E-7 

4 30C-37 97.1 3 640 0.8 1.23 E-6 5.1 E-7 

 5 30C 90.5 3 870 1.3 1.89 E-6 6.0 E-7 

6 30C15F-37 96.0 3 640 0.7 0.86 E-6 3.7 E-7 

7 30C15F 94.5 3 1,190 1.1 1.59 E-6 6.2 E-7 

8 50C-37 92.2 3 700 0.5 1.23 E-6 5.0 E-7 

9 50C15F-37 96.0 3 800 0.7 1.13 E-6 4.9 E-7 

10 70C-37 96.0 2 450 0.7 1.29 E-6 5.3 E-7 

 

Increasing the RCA content did not have a significant effect on abrasion resistance. The 

investigated mixtures exhibited similar resistance to abrasion damage with mass loss limited to 

0.07 ounce (2.0 g). The investigated mixtures had durability factors higher than 89%, regardless 

of the RCA content, thus indicating excellent frost durability. The mixtures made RCA exhibited 

considerable higher de-icing salt mass loss than that of the reference MoDOT mixture. The mass 

loss after 50 cycles of freezing and thawing of RCA mixtures was limited to 25.7 oz/yd2 (870 
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g/m2), which is considered adequate; this is in exception of two mixtures in Table 5 that exceeded 

the upper limit of (29.5 oz/yd2) [1000 g/m2]. All of the investigated mixtures had comparable 

CTE values ranging from 4.8 to 5.2 10-6 in./in./°F (8.6 to 9.4 µm/m/°C). 

3.2 RECOMMENDED MIXTURES FROM PHASE I 

Concrete mixtures incorporating high volume recycled aggregate and SCMs can present a 

viable choice for sustainable pavement construction. The following mixtures exhibited 

satisfactory performance for the construction of the single layer and two-lift pavement systems: 

Single layer pavement: 

1. Reference concrete cast without any RCA proportioned with 0.40 w/cm and 25% Class C 

fly ash replacement (this corresponds to the MoDOT PCCP reference concrete). 

2. Concrete incorporating 15% slag cement and 35% Class C fly ash replacements 

proportioned with 0.40 w/cm without any RCA (optimized binder). 

3. Concrete made with 15% slag cement and 35% Class C fly ash replacements proportioned 

with 0.40 w/cm and 30% coarse RCA (30C). 

4. Concrete incorporating 15% slag cement and 35% Class C fly ash replacements 

proportioned with 0.37 w/cm and 50% coarse RCA (50C-37). 

Table 6 offers a summary of the properties of the proposed mixtures for use in single layer 

pavement.  



15 

Table 6 - Performance of the proposed mixtures for use in single layer pavement 

Property MoDOT PCCP Opt. binder 30C 50C-37 

28-d Compressive strength (psi) 5,590 6,020 5,800 6,820 
91-d Compressive strength (psi) 6,750 7,330 6,600 7,910 
56-d Modulus of elasticity (ksi) 5,920 6,420 5,570 5,850 
56-d Flexural strength (psi) 700 770 720 750 
90-d Shrinkage (µε) 430 340 450 420 
Frost durability factor (%) 96 93 91 92 
De-icing salt scaling rating 1 3 3 3 
De-icing salt mass loss (g/m2) 100 735 870 700 
De-icing salt mass loss (oz/yd2) 2.95 21.7 25.7 20.6 

Two-lift concrete pavement: 

1. Reference concrete mixture cast without any RCA proportioned with 0.40 w/cm and 25% 

Class C fly ash replacement for the top layer (MoDOT PCCP reference concrete). 

2. Concrete incorporating 15% slag cement and 35% Class C fly ash replacements, 0.40 

w/cm, without any RCA for the top layer (optimized binder). 

3. Concrete incorporating 15% slag cement and 35% Class C fly ash replacements, 0.40 

w/cm, and 30% coarse RCA for top layer (30C). 

4. Concrete incorporating 15% slag cement and 35% Class C fly ash replacements, 0.37 

w/cm, 50% coarse RCA, and 15% fine RCA for bottom layer (50C15F-37). 

5. Concrete incorporating 15% slag cement and 35% Class C fly ash replacements, 0.37 

w/cm, and 70% coarse RCA for bottom layer (70C-37). 

Table 7 offers a summary of the properties of the proposed mixtures for use in 2LCP.  
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Table 7 - Performance of the proposed mixtures for use in 2LCP 

Property 

Top layer 
application 
MoDOT 
PCCP 

Top layer 
application 
Opt. Binder 

Top layer 
application 

30C 

Bottom layer 
application 
50C15F-37 

Bottom layer 
application 

70C-37 

28-d 
Compressive 
strength (psi) 

5,590 6,020 5,800 6,020 6,750 

91-d 
Compressive 
strength (psi) 

6,750 7,330 6,600 7,110 7,690 

56-d Modulus of 
elasticity (ksi) 5,920 6,420 5,570 5,450 5,500 

56-d Flexural 
strength (psi) 700 770 720 740 760 

90-d Shrinkage 
(µε) 430 340 450 490 450 

Durability factor 
(%) 96 93 91 96 96 

De-icing salt 
scaling rating 1 3 3 3 2 

De-icing salt 
mass loss (g/m2) 100 735 870 800 450 

De-icing salt 
mass loss 
(oz/yd2) 

2.95 21.7 25.7 23.6 13.3 
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4. INSTRUMENTATION 

The details of sensors and data acquisition systems required were finalized in 

collaboration with MoDOT engineers. The required sensors and data acquisition systems were 

properly designed and procured. Two data acquisition systems were prepared to monitor changes 

in deformation, temperature, and RH in concrete elements as a function of time. Table 8 

summarizes the list of instrumentation used for the data acquisition system. The following 

describes the instrumentation for slab and beam specimens that can be used for field 

implementation of sustainable concrete made with RCA. 

Table 8 - Equipment required for instrumentation 

Item Number 

Data acquisition system 2 

Solar panel 2 

Concrete strain gauge 72 

Relative humidity sensor 36 

Thermocouple 4 rolls 

Wire 16 rolls 

Modem 2 

The embedment type of strain gauges (KM-120-120-H2-11, manufactured by KYOWA) 

was considered to monitor concrete shrinkage, as shown in Figure 1. The sensor has an outer 

body of 120 mm (4.7 in.) sensing grid with an effective gauge length of 75 mm (3.0 in.). The 

gauge is waterproof and is designed to be placed in fresh concrete to directly measure shrinkage 

deformation associated with the concrete mixture. 
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Figure 1 - Embedded strain gauge for monitoring shrinkage deformation 

The selected thermocouple system (UX-08542-24, manufactured by Coleparmer) was a 

Type T 20 gauge wire. These thermocouples consist of copper and constantan wires and are 

functional between -250 to 250° C (-418 to 482 °F). The ends of the solid thermocouple wires 

were twisted and then soldered to ensure an adequate electrical connection, as shown in Figure 2. 

 
Figure 2 - Thermocouple used for concrete temperature measurement 

The small (6 × 20 mm [0.24 × 0.79 in.]) capacitive RH sensor (HIH-4030, manufactured 

by Sparkfun) was considered to measure the RH inside the concrete. The accuracy of the sensors 

reported by the manufacturer is ± 2% RH between 10% and 90% RH, and ranges up to ± 4% at 

100% RH. In order to embed the RH sensor in concrete, the RH sensor is placed inside a PVC 

tube, and the end of the tube is covered by Gore-Tex to allow moisture transmission, while 

preventing the penetration of liquid water and solid particles that may lead to an error in 

measurement. Figure 3 shows the encapsulated RH sensor before installation in concrete. 
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Figure 3 - Encapsulated relative humidity sensor before embedment in concrete 

Figure 4 shows the proposed instrumentation layout, including embedded concrete strain 

gauges, RH sensors, and thermocouples for monitoring shrinkage of concrete used for pavement 

construction. Sensors were placed at different locations/heights to monitor concrete shrinkage at 

various depths along the thickness of concrete slabs. 

 
Figure 4 - Instrumentation layouts for (a) Layout A: 3 embedded strain gauges in longitudinal 

direction, 3 thermocouples and RH sensors, and (b) Layout B: 4 embedded strain gauges (2 

longitudinal and 2 transverse directions), 2 thermocouples and RH sensors 

Both strain and temperature data can be recorded using Campbell Scientific Data 

acquisition hardware and software systems. Lead wires from the strain gauges can be routed 

through either an AM416 or an AM16-32 multiplexer, using a separate completion module for 
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each gauge on the multiplexer, or using a single completion module for all the gauges that can be 

positioned between the multiplexer and the datalogger, as shown in Figure 5. The system is 

powered by a 12 V battery for which the charge is maintained using a solar panel. 

 

Figure 5 - Data acquisition system used for data collection 
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5. LIFE CYCLE COST ANALYSIS 

One of the main advantages of using RCA in concrete production is the reduced need of 

using non-renewable natural resources, such as natural aggregates. This can also reduce the 

amount of construction and demolition wastes dumped into landfills. If recycling (concrete into 

aggregate) is performed in place, there will be savings in hauling distance of the aggregate from 

quarry to the job site as well. This will reduce transportation emissions, cost, and time. 

As for environmental impact, using high-volume SCMs can be an effective means of 

reducing the carbon footprint of the concrete. In addition, using proper amounts and types of 

SCMs can lead to improved mechanical properties and durability of concrete, which in turn 

enhances the service life and compensates for the potential negative impacts associated with the 

use of RCA. The estimated material unit costs and service life improvement rates obtained for 

optimized mixtures are shown in Table 9. They are the best-guess values based on a combination 

of compressive strength, flexural strength, MOE, and drying shrinkage laboratory results. These 

values could be further evaluated once field implementation data become available. 

Given the potential for on-site recycling, high-volume recycled materials tested in this 

project can decrease construction time, labor, and equipment needed on construction sites. The 

following highlights potential improvements of the high-volume recycled materials compared 

with typical practice using the reference mixture.  

 Decrease in construction time, labor, and equipment needed on construction sites; 

 Reduced costs and emissions related to cement consumption; 

 Reduced need for landfills and use natural resources by using recycled aggregate 

in new concrete production; 

 Potentials for reducing the hauling distance for aggregate; 
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 Improved quality and service life can be expected. 

Table 9 - Estimated material unit prices and service life improvement rates 

Mixture Unit price ($/CY) 
Relative improvement compare 

to reference mixture (%) 

MoDOT reference mixture 45.2 - 

Optimal binder 44 10.3 

30C-37 44.5 3.0 

50C-37 43.3 -3.1 

50C15F-37 43.1 -8.1 

60C30F 43.7 -33.2 

70C-37 43.8 -5.1 

Deterministic pavement life cycle cost analysis (LCCA) examples were built for the 

MoDOT reference mixture and six different high-volume recycled materials mixtures selected in 

Phase I using the improvement rate approach. The LCCA for the case study presented here was 

conducted in collaboration with Professor Kaan Ozbay and his team at New York University as 

part of a collaboration of the RE-CAST Tier-1 University Transportation Center. Since the 

proposed high-volume recycled materials studied here are supposed to be used as construction 

materials, the maintenance costs are assumed to be the same and are neglected in this case study. 

According to a survey conducted by the RE-CAST team, the average construction unit cost in 

Missouri in 2016 was $53/yd2 for the construction of a 9-in. (229-mm) thick concrete pavement, 

which is used for the reference concrete. Also, a 0.25-in. (6-mm) diamond grinding and full-

depth repair (1.5% slab replacement is required in the travel lane) is assumed to happen after 25 

years for the MoDOT reference mixture. The same treatment was applied for this project’s 

concrete mixture based on its estimated rehabilitation schedule. In addition, the following 

assumptions were made for the concrete with improved workability in terms of labor costs and 
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construction time savings: 1) the labor costs for the placement and consolidation will be reduced 

by 20%; 2) the patching labor costs will be reduced by 30%; and 3) the construction time for 

rehabilitation will be reduced by 10%. 

The case study project chosen for this research objective is a highway section on US 50 

in Osage County, Missouri. This paving project is approximately 6.634 miles (10.68 km) in 

length and starts at logmile 152.6 and ends at logmile 159.234. It has two 13-ft (3.9-m) wide 

lanes in each direction with asphalt shoulders. The Average Daily Traffic (ADT) of this section 

is 12,420 vehicles, and 8.5% of the total vehicles are trucks. The traffic growth rate is assumed to 

be 2.2%. Table 10 lists the detail input information for this pavement example, and Table 11 lists 

the deterministic output results. Note that for Table 10 and Table 11, a reference concrete 

mixture used by MoDOT and the optimal binder of Phase I were used to establish the workflow. 

Computing the construction cost of a pavement alternative involves not only the material 

quantity calculations, but also the other direct and indirect costs associated with the pavement 

alternative being considered (CDOT 2016). In the proposed pavement LCCA approach, the cost 

of preliminary engineering, miscellaneous and mobilization are included in both initial 

construction and rehabilitation cost. The estimated percentage of such costs are based on average 

values retrieved from MoDOT’s pavement design and type selection process report (MODOT 

2004). When using the optimal binder of the new material in this project, the final deterministic 

pavement LCCA results given in Table 11 show that the application of the new material will 

save 17.6% of agency costs, 12.1% of user cost, 12.1% of social cost, and 17.5% of total life 

cycle cost. In this case study, the user costs are only calculated for stopped queues under work 

zone conditions.  
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Table 10 - LCCA example work flow – inputs 

I. Analysis options Alt 1:  
MoDOT reference concrete 

Alt 2:  
Project 2-A opt. binder 

1. Service life (year) 25 28 
2. Analysis period (year) 45 45 
3. Discount rate (%) 3.0% 3.0% 
4. Material unit price ($/CY) 45.2 44.0 
5. Construction unit cost ($/SY) 53.00 48.69 

 

II. Traffic data  Alt 1:  
MoDOT reference concrete 

Alt 2:  
Project 2-A opt. binder 

Average daily traffic (veh/day): 12,420 12,420 
Trucks as percentage of ADT (%): 8.50% 8.50% 
Annual growth rate of traffic (%): 2.2% 2.2% 
Lanes opened under normal 
condition: 

Inbound (2), outbound (2) Inbound (2), outbound 
(2) 

Value of time ($/hr): 11.58 (Passenger car), 20.43 
(Truck) 

11.58 (Passenger car), 
20.43 (Truck) 

 

III. Work zone input Alt 1:  
MoDOT reference concrete 

Alt 2:  
Project 2-A opt. binder 

Maintenance schedule: 

Maintenance schedule/cost 
are assumed to be the same 
for both alternatives and are 

neglected in this study 

Maintenance 
schedule/cost are 

assumed to be the same 
for both alternatives and 

are neglected in this 
study 

Rehabilitation/replacement 
schedule: 

Time to first rehabilitation: 25 
years (rehabilitation extended 

service life: 20 years) 

Time to first 
rehabilitation: 28 years 
(rehabilitation extended 
service life: 20 years) 

Rehabilitation duration (days): 30 27 
# lanes opened during 
maintenance/rehab: 1 lane 1 lane 

Free flow speed (mph): 70 70 
Work zone speed-maintenance 
(mph): 50 50 

Work zone speed-rehabilitation 
(mph): 30 30 
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Table 11 - LCCA example work flow – deterministic outputs 

I. Agency cost ($) Alt 1:  
MoDOT Reference Concrete 

Alt 2:  
Project 2-A Opt. Binder 

Initial construction cost ($): 8,187,943 6,904,562 

Maintenance cost ($): 
Maintenance cost is assumed to 
be the same for both alternatives 
and are neglected in this study 

Maintenance cost is assumed to be 
the same for both alternatives and 

are neglected in this study 
Rehabilitation cost:   
(A) Slab replacement ($): 188,484 172,489 
(B) Treatment - diamond 
grinding ($) 174,952 160,106 

(C) Miscellaneous & 
mobilization ($) 52,445 47,995 

(D) Preliminary engineering 
($) 43,704 39,996 

Total rehabilitation cost (s): 459,585 420,585 
Salvage value ($): 0 -195,625 
Total agency cost ($): $8,647,528 $7,129,522 
 

II. User cost ($) Alt 1:  
MoDOT Reference Concrete 

Alt 2:  
Project 2-A Opt. Binder 

Traffic delay cost ($): $0 $0 

Vehicle operation cost ($): $0 $0 

Crash risk cost ($): $255,618 $224,737 
Total user cost ($): $255,618 $224,737 
 

III. Social cost ($) Alt 1:  
MoDOT Reference Concrete 

Alt 2:  
Project 2-A Opt. Binder 

Air Pollution cost ($): $74,260 $65,289 
Total Social cost ($): $74,260 $65,289 
 

 Alt 1:  
MoDOT Reference Concrete 

Alt 2:  
Project 2-A Opt. Binder 

IV. Total life cycle cost $8,798,473 $7,262,232 

Alt 2: Project 2-A optimal 
binder benefit 

Total life cycle cost: -17.5% 
Agency cost: -17.6%, user cost: 
-12.1%, social cost: -12.1% 
(User cost factor: 0.3, social cost 

factor: 1.0) 

Total life cycle cost: -17.5% 
Agency cost: -17.6%, user cost: -
12.1%, social cost: -12.1% 
(User cost factor: 0.3, social cost 

factor: 1.0) 
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Since the traffic volume on the study highway segment will not exceed the highway 

capacity under work zone conditions, traffic delay costs and vehicle operation costs are taken as 

zero. Furthermore, based on the information provided in Table 10, the research team applied 

LCCA to multiple mixtures selected in Phase I. Their relative differences in total life cycle cost 

compare with that of MoDOT reference mixture, as shown in Figure 6. Most of the sustainable 

mixtures made with RCA provided 15% to 18% cost savings in terms of the total life cycle cost. 

 
Figure 6 - Relative difference in LCCA of multiple mixtures 
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6. ARTIFICIAL INTELLIGENCE FOR INVESTIGATING EFFECT OF RCA ON 

CONCRETE PROPERTIES  

As stated earlier, the mechanical properties and durability of concrete made with RCA 

can be significantly impacted when using RCA materials of inferior quality compared to that of 

the virgin aggregate. The MOE is one of the characteristics of concrete that is highly sensitive to 

the incorporation and quality of RCA. The availability of residual mortar in RCA particles can 

reduce the overall stiffness and restraining capacity of the coarse aggregate skeleton and increase 

the absolute volume of mortar in the hardened state. This can reduce the rigidity of the concrete, 

resulting in a lower MOE compared to the corresponding mixtures prepared without any RCA. 

Moreover, the presence of micro-cracks in the residual mortar, old virgin aggregate, and the old 

interfacial transition zone (ITZ) between these two phases (anticipated due to the crushing 

procedure), can significantly affect the MOE.  

Considering the fact that MOE is one of the main features to affect the design and 

performance of rigid pavements, it was decided in this project to develop a model to estimate the 

variations in MOE of concrete. The model development involved three main phases. The first 

phase included the development and screening of a database of published literature on the MOE 

of concrete made with coarse RCA. The second phase was to generate laboratory data to validate 

the model. The third phase involved testing the model based on artificial neural networks (ANN). 

These steps are further elaborated in what follows. 

6.1 DEVELOPMENT AND ANALYSIS OF THE DATABASE 

The database that was established to correlate the MOE of concrete with the key 

parameters affecting it consisted of 484 data series obtained from 52 published articles. Details 
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regarding the model development are available in Sadati et al. (2019). The 28-day compressive 

strength of the investigated concrete mixtures ranged from a minimum of 2,180 psi (15 MPa) to 

approximately 15,900 psi (110 MPa). The minimum and the maximum MOE values were 1,600 

and 8,000 ksi (11 and 55 GPa), respectively. Each dataset included a summary of the concrete 

mixture design, virgin aggregate content and properties, and coarse RCA content and 

characteristics. The investigated input factors are elaborated below.  

Binder: binder content (kg/m3) and binder type, which was considered as a categorical 

factor of 1 or 2. An input value of 1 was attributed to the concrete with plain portland cement 

(OPC), while binder type 2 was used for concrete mixtures with SCM. 

Water: water-to-binder ratio (w/b), water-to-cement ratio (w/c), and water content 

(kg/m3). 

Fine aggregate: fine aggregate content (kg/m3). 

Virgin coarse aggregate: virgin coarse aggregate content (kg/m3), virgin coarse 

aggregate water absorption (%), virgin coarse aggregate oven-dry specific gravity, and virgin 

coarse aggregate Los Angeles (LA) abrasion value (%). 

Coarse RCA: coarse RCA (C-RCA) content (kg/m3), coarse RCA water absorption (%), 

coarse RCA oven-dry specific gravity, coarse RCA LA abrasion value (%), and coarse RCA 

replacement ratio (% mass). 

Total coarse aggregate: total coarse aggregate content (kg/m3), combined coarse 

aggregate water absorption (%), combined coarse aggregate oven-dry specific gravity, and 

combined coarse aggregate LA abrasion value (%). The combined coarse aggregate properties 

were calculated as a linear combination of the properties and relative mass of the blend 

constituents, as proposed by Omary et al. (2016). Equations (1-3) were used to determine the 
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oven-dry specific gravity, water absorption, and mass loss due to LA abrasion, respectively, of a 

given combination of coarse aggregate, respectively, as suggested by Omary et al. (2016). 

 CoarseSG = [(MassRCA X  RCASG) + (MassNC X NCSG)]/(MassRCA + MassNC) (Eq. 1) 

 CoarseAbs = [(MassRCA X  RCAAbs) + (MassNC X NCAbs)]/(MassRCA + MassNC) (Eq. 2) 

 CoarseLA = [(MassRCA X  RCALA) + (MassNC X NCLA)]/(MassRCA + MassNC) (Eq. 3) 

where 𝑀𝑎𝑠𝑠𝑅𝐶𝐴 is the RCA content (kg/m3), 𝑀𝑎𝑠𝑠𝑁𝐶 is the virgin coarse aggregate content 

(kg/m3), 𝑅𝐶𝐴𝑆𝐺  is the oven-dry specific gravity of RCA, 𝑁𝐶𝑆𝐺  is the oven-dry specific gravity of 

the virgin coarse aggregate, 𝑅𝐶𝐴𝐴𝑏𝑠 is the water absorption of the RCA (%), 𝑁𝐶𝐴𝑏𝑠 is the virgin 

coarse aggregate absorption rate (%), 𝑅𝐶𝐴𝐿𝐴 is the mass loss due to LA abrasion of RCA (%), 

𝑁𝐶𝐿𝐴 is the mass loss due to LA abrasion of the virgin coarse aggregate (%), and 𝐶𝑜𝑎𝑟𝑠𝑒𝑆𝐺, 

𝐶𝑜𝑎𝑟𝑠𝑒𝐴𝑏𝑠, and 𝐶𝑜𝑎𝑟𝑠𝑒𝐿𝐴 are the oven-dry specific gravity, water absorption rate (%), and LA 

abrasion (%) of the coarse aggregate combination, respectively. 

Table 12 offers a summary of the input features along with the corresponding minimum 

and maximum values. Four different scenarios of input factors were explored to ensure the most 

generalized and robust predictions with the lowest chance of overfitting the data. Development 

of a comprehensive model requires the employment of user-friendly, yet representative indices to 

depict the RCA quality. One should note that the heterogeneous nature of RCA makes it 

impossible to define representative indices at the micro level. Therefore, the considered RCA 

properties included water absorption, specific gravity, and mass loss due to LA abrasion, which 

are also employed by the standards, recommendations, and guidelines to define RCA quality 

(Khayat and Sadati 2016). The investigated input scenarios are elaborated below and 

summarized in Table 12. 
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Table 12 - ANN model input and output parameters for database and laboratory mixtures 

Type No. Parameter Database 
Min. 

Database 
Max. 

Database 
Avg. 

Database 
Std.* 

Labo-
ratory 
Min. 

Labora-
tory 
Max. 

Labora-
tory 
Avg. 

Labora-
tory 
Std.* 

Sc
ena
rio 
I 

Sc
ena
rio 
II 

Sc
ena
rio 
III 

Sce
nari

o 
IV 

Input 1 Binder content (kg/m3) 210 609 375.2 65.5 317 323 322 2 * * * * 
Input 2 Binder type 1: OPC 2: SCM - - 2 2 - - * * * * 
Input 3 Virgin coarse content (kg/m3) 0 1950 558.0 444.0 0 1136 632 310 * * * * 
Input 4 Coarse RCA content (kg/m3) 0 1800 501.9 435.0 0 964 410 260 * * * * 
Input 5 water/binder (w/b) 0.25 0.87 0.48 0.11 0.37 0.45 0.40 0.02 * * * * 
Input 6 water/cement (w/c) 0.29 1.22 0.52 0.14 0.53 0.80 0.63 0.11 * * * * 
Input 7 Fine aggregate content (kg/m3) 465 1301 726 126 772 795 785 7 * * * * 
Input 8 Coarse aggregate absorption (%) 0.20 6.10 1.26 0.80 0.50 0.98 0.80 0.10 * * * * 
Input 9 C-RCA absorption (%) 1.93 18.91 5.39 2.41 4.20 7.58 5.40 1.17 * * * * 
Input 10 Coarse  specific gravity, OD (kg/m3) 2483 2880 2607 82 2640 2730 2719 23 * * * * 
Input 11 C-RCA specific gravity, OD (kg/m3) 1800 2602 2313 125 2170 2380 2297 73 * * * * 
Input 12 Coarse aggregate NMAS (mm) 8 32 20.1 4.0 19 19 19 0 * * * * 
Input 13 Coarse RCA NMAS (mm) 8 32 19.0 4.9 13 19 18 2 * * * * 
Input 14 Coarse aggregate LA abrasion (%) 14 43 20.8 6.0 24 43 29.3 5.1   * * 
Input 15 C-RCA LA abrasion (%) 13.7 81.7 33.8 8.8 33 53 39.3 6.2   * * 
Input 16 water content (kg/m3) 108 234 175 30 120 143 128 7  *  * 
Input 17 Total coarse aggregate content (kg/m3) 640 1950 1060 143 907 1136 1042 53  *  * 
Input 18 Coarse combination absorption (%) 0 16 3.2 2.0 0.50 7.13 2.70 1.40  *  * 
Input 19 Coarse combination specific gravity, OD 1800 2880 2467 144 2210 2730 2543 123  *  * 
Input 20 Coarse combination LA abrasion (%) 13.7 51.5 27 8 24 53 33.5 5.5    * 
Input 21 Coarse RCA replacement ratio 0 1 0.5 0.4 0 1 0.4 0.3  *  * 
Output  Relative MOE (RMOE) 0.44 1.37 0.89 0.12 0.67 1.05 0.89 0.09     

*Standard deviation 
1 kg/m3 = 1.686 lb/yd3 
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Scenario I: The input factors included 13 independent properties summarizing the key 

mixture design details, virgin aggregate properties, and RCA characteristics. The aggregate-

related properties included the aggregate content (kg/m3), oven-dry specific gravity, and water 

absorption (%) for both the virgin and RCA materials. The LA abrasion value was not included 

in the first scenario, since not all of the investigated sources from the literature reported these 

values for RCA.  

Scenario II: A total number of 18 input factors were investigated for the second scenario. 

The input parameters included the 13 independent properties (elaborated on in scenario I) and an 

additional set of five dependent parameters. The aggregate-related properties considered in the 

second scenario included the aggregate content (kg/m3), oven-dry specific gravity, and water 

absorption (%) for both the virgin and RCA materials. Again, the LA abrasion of the coarse 

virgin aggregate and RCA were not included in the analysis. The additional dependent variables 

were the total water content in the mixture, total coarse aggregate content (kg/m3), RCA 

replacement ratio (% mass) of coarse aggregate, combined coarse aggregate oven-dry specific 

gravity, and combined coarse aggregate water absorption (%); the last two values were 

calculated using Equations 1 and 2, respectively. 

Scenario III: A total number of 15 independent input parameters were considered for the 

third scenario. The 13 factors elaborated on scenario I were incorporated along with the LA 

abrasion values of the virgin coarse aggregate and the RCA materials. As stated earlier, not all of 

the investigated references reported the LA values of the aggregate. Therefore, based on the data 

reported in the literature, in addition to a laboratory investigation that was undertaken here, 

correlations were established between the LA abrasion and the water absorption and specific 

gravity of the RCA as suggested by González-Taboada et al. (2016). Figure 7 presents the 



32 

correlations between the LA abrasion and the water absorption developed by González-Taboada 

et al. (2016) and further updated by the authors obtained from over 100 different RCA types. A 

strong linear correlation was observed, with a R2 value of 0.75 for the relationship between the 

LA abrasion and the water absorption. The correlation established in Figure 7 was employed to 

estimate the LA abrasion for concrete mixtures where actual values were missing data points of 

the database. 

 
Figure 7 - Correlation between LA abrasion and water absorption 

Scenario IV: A total number of 21 input parameters were included in this scenario. The 

aggregate-related properties considered in this scenario included the aggregate content (kg/m3), 

oven-dry specific gravity, water absorption (%), and LA abrasion (%) for both the virgin and 

RCA materials. The additional dependent variables were the water content in the mixture, total 

coarse aggregate content (kg/m3), RCA replacement ratio (% mass), combined coarse aggregate 

water absorption (%), combined coarse aggregate oven-dry specific gravity, and combined 

coarse aggregate LA abrasion (%) calculated using Equations (1), (2), and (3), respectively. 
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Output: the output of the study was the relative variation in MOE, defined in Equation 

(4).  

 RMOE = (MOE of concrete made with RCA)/(MOE of corresponding reference concrete 

made without RCA)  (Eq. 4) 

A relative performance value of 1.0 was considered for the control mixture (proportioned 

without any RCA) of each study reported in the database. Considering the relative MOE (𝑅𝑀𝑂𝐸) 

as the means of comparison reduces the uncertainties related to non-uniform experimental 

conditions, e.g. air content in the hardened state, specimen size, test device, loading rate, and test 

protocol, etc., typical of database analysis. This way, one can assume that there are no significant 

correlations between the aforementioned factors and the relative performance of the mixtures.  

6.2 LABORATORY DATA 

Material properties. In total, 43 different concrete mixtures were produced in the 

laboratory. Type I/II portland cement, Class C fly ash (FA-C), and ground granulated blast 

furnace slag (GGBS) were used as binder materials. The mixtures were proportioned with either 

binary or ternary cement. The binary cement was composed of 75% (by mass) OPC and 25% 

FA-C. The ternary system incorporated 35% FA-C and 15% GGBS. The binary cement was 

adopted from the concrete mixture design employed by the Missouri Department of 

Transportation (MoDOT) for rigid pavement construction Khayat and Sadati (2016). The ternary 

system was optimized based on the mechanical properties and shrinkage of concrete equivalent 

mortar prepared with w/cm of 0.40, developed by Khayat and Sadati (2016). Three different 

water-to-cementitious materials ratios (w/cm) of 0.37, 0.40, and 0.45 were considered during the 

design of the concrete mixtures. Coarse RCA procured from six different sources, including five 

recycling centers and one laboratory produced RCA, were considered. A siliceous river sand was 

incorporated as fine aggregate. The aggregate properties were introduced earlier in Table 1. An 

air entraining agent was used to secure 6% ± 1% air in fresh concrete. A water reducing 

admixture was incorporated to adjust the initial slump values. 
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Concrete preparation and testing. A drum mixer with 0.26 gallon (110-L) capacity was 

used for concrete mixing. Slump and air content in the fresh state were determined according to 

ASTM C143 and ASTM C231, respectively. Cylindrical specimens measuring 3.9 × 7.9 in. (100 

× 200 mm) were employed to determine the compressive strength and MOE according to ASTM 

C39 and ASTM C469, respectively. A vibrating table was employed to secure proper 

consolidation of the concrete. Extracted samples were then covered with wet burlap and plastic 

sheets up to 24 hours after casting. The specimens were cured in lime-saturated water at 70 ± 3 

ºF (21 ± 2 ºC) up to the testing time at 28 days.  

6.3 MODEL DEVELOPMENT 

Inspired by the biological nervous system, the ANNs are information analysis paradigms 

that are widely used as computational tools. Concretely, an ANN is a universal function 

approximator that builds the mapping between an input and an output space. Modeling using 

ANN involves five main steps: (1) representing the problem and acquiring the data; (2) defining 

the architecture; (3) determining the learning process; (4) training the network; and (5) testing 

the developed network to ensure robustness and generalization (Duan et al., 2017). Neural 

networks are composed of a large number of interconnected artificial processing units, known as 

neurons. Usually, these neurons are arranged in layers (input, hidden, and output), which in turn 

are fully connected; the number of neurons per layer defines the ANN architecture. Each neuron 

typically consists of five different parts: inputs, weights, transfer function, activation function, 

and output, as illustrated in Figure 8. The transfer function used in this study is the weighted sum 

presented in Equation (5): 
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  (Eq. 5) 

where 𝒙 represents the input vector applied to a given neuron associated with weight vector 𝒘; 

thus,  𝑛𝑒𝑡𝑗 is the weighted sum of the jth neuron based on its weights and input values from n 

neurons of the preceding layer, 𝑤𝑖𝑗 is the weight factor between the jth neuron and the ith neuron 

of the preceding layer, whose output is 𝑥𝑖, and 𝑏 = 𝑤0𝑗𝑥0 is the bias (𝑥0 = 1). 

 
Figure 8 - Schematic structure of a simple neuron model 

The activation function 𝜑(𝑛𝑒𝑡𝑗) translates the net value to the neuron output. A variety 

of activation functions were presented in the literature, such as linear, sigmoid, and hyperbolic 

tangent sigmoid, etc. In this study, the activation functions of the output and hidden neurons 

were set as linear and hyperbolic tangent sigmoid, respectively: 

  (Eq. 6) 

  (Eq. 7) 
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 The first is the identity function, and the latter takes the 𝑛𝑒𝑡 values in the range (−∞,∞) 

and converts it into an output in the interval (-1, 1).  

The neural network toolbox provided by MATLAB-2016a was used to develop the 

model.  A multilayer perceptron (MLP) network with one hidden layer was used to form the 

ANN architecture. Adjusting the weight to ensure the desired output, based on experimental data, 

is defined as the training process. Given the acceptable performance in solving problems related 

to concrete materials (Duan et al., 2017) the back-propagation learning algorithm (Werbos 1994) 

was employed to train the system. This learning process consists of two main steps:  

(1) A forward flow of the input signal from the input layer toward the output layer and a 

calculation of error based on the comparison between the network’s output and the target value, 

i.e. experimental data. The cost function (error) to be minimized (with respect to the ANN 

weights 𝒘) is given by: 

  (Eq. 8) 

Where is the output of the neural network when using a training set comprised 

of 𝑁 samples of {input, output} pairs: 𝒯 = {𝒙𝑖,𝒚𝑖}𝑖=1𝑁 .  

(2) Backward propagation of the error signal and an adjustment of all the neurons’ 

weights to minimize the error according to the generalized delta rule: 

  (Eq. 9) 

In this work, the optimization method of Levenberg-Marquardt backpropagation (LMBP) 

was used to train the MLP (Levenberg, 1944, Marquardt 1963) since it is well-known to be 

effective (Hagan 1994, Fu et al., 2015, Haykin, 2009): 
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  (Eq. 10) 

  (Eq. 11) 

  (Eq. 12) 

where 𝜇  is a regularizing parameter; 𝒈  and 𝑯  are the gradient and Hessian of the cost 

function  𝐽(𝒘) ; and 𝑰  is the identity matrix. If the cost function increases, the regularizing 

parameter is increased by a factor of 𝜇+, otherwise it is decreased by 𝜇− and the generalized 

delta rule is applied to update the weights. 

Early stopping criterion based on consecutive validation set error checks were used to 

avoid overfitting the training data and to allow a better generalization performance of the MLP 

for previously unseen data. Additionally, each input parameter was scaled to the range (-1, 1).  

In this study, a genetic algorithm (GA) (Eiben & Smith 2007) with integer representation 

was used to tune the internal parameters of the MLP, specifically, the number of hidden neurons, 

the maximum number of validation checks, the initial regularizing parameter value, and its 

increase and decrease ratios.  

A total of 436 data samples, corresponding to 90% of the data available in the developed 

database, were randomly selected for training the neural network. The 43 data series obtained 

from laboratory investigations (discussed in Section 2.2.) were used for model validation. The 

remaining 10% of the data from the database were used for testing the selected model.  

The GA optimization was carried out using a population of 100 individuals for 100 

generations. To measure the performance consistency of a given ANN parameter configuration, 

the fitness function of the GA was defined as the median of the validation mean square error 
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(MSE) of a given parameter configuration after the realization of 30 trials, each of which with 

random weight initialization (to address the local optima issues common to these types of neural 

networks). The ANN parameters optimized using GA included the number of hidden neurons 

(𝑁) within the range of [1, 30] and 30 grid points, the maximum number of validation checks  

(𝑉) within the range of [3, 10] and 8 grid points, the initial regularizing parameter (𝜇) within the 

range of [0.001,1] and 1000 grid points, the regularizing parameter decrease ratio (𝜇−) within the 

range of [0.1, 0.8] and 100 grid points, and the regularizing parameter increase ratio (𝜇+) within 

the range of [1.5, 10] and 100 grid points. These parameters were discretized using a grid of 

linearly and equally spaced points within their respective ranges from which the GA was used to 

evolve the best combination. The optimization toolbox provided by MATLAB-2016a was used 

to perform this parameter tuning. The following fixed parameters were considered during the GA 

optimization: LMBP training method and MSE cost function were used, respectively. The 

maximum training time was fixed at 1s while the maximum number of epochs was 102. The 

performance goal was 0, with a minimum gradient of 10-7, and the maximum regularizing 

parameter (𝜇𝑚𝑎𝑥) of 103. 

The GA was run 10 times and the solutions obtained were used in the next step of the 

model development, which consisted of running 1000 trials for each of the ANN parameter 

configurations and selecting the one with the best performance in terms of the validation set 

error. In case of a tie, the architecture with the best training error was selected. For fine-tuning 

purposes, an additional parameter sweep analysis of the number of hidden neurons was carried 

out by fixing the other parameters around values close to the solutions obtained by the GA. This 

setting of the number of neurons in the MLP’s hidden layer is related to the approach discussed 

by Duan et al. (2017), in which the number of neurons is varied and the best architecture is 
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selected. Finally, the same procedure was performed with an equal set of default parameters for 

all scenarios. The selected parameters are listed in Table 13. 

Table 13 - ANN parameters when performing the hidden layer parameter sweep 
analysis 

Parameter description 

Parameter 
value per 
scenario 

(GA) 
13 

parameters 

Parameter 
value per 
scenario 

(GA) 
18 

parameters 

Parameter 
value per 
scenario 

(GA) 
15 

parameters 

Parameter 
value per 
scenario 

(GA) 
21 

parameters 

Default 
parameters 

Training method LMBP LMBP LM P LMBP LMBP 
Cost function MSE MSE MSE MSE MSE 
Number of hidden neurons 
(𝑁) 7 7 28 16 (11, 8, 10, 

8) 
Maximum number of 
validation checks  (𝑉) 9 9 7 6 10 

Initial regularizing parameter 
(𝜇) 0.7 0.14 0.03 0.03 0.001 

Regularizing param. decrease 
ratio (𝜇−) 0.2 0.26 0.50 0.14 0.1 

Regularizing param. increase 
ratio (𝜇+) 2.4 2.8 2.70 5.10 10 

Maximum regularizing param. 
(𝜇𝑚𝑎𝑥) 1010 1010 1010 1010 1010 

The performance metrics, i.e. regression results and MSE summarizing the correlations 

between the estimated values (neural network’s output) and the experimental data (target values), 

of all the ANNs after the parameter tuning process are listed in Table 14. For each case, the 

optimal ANN parameter configuration for the training, validation, and test subsets were 

incorporated as defined earlier to investigate the different subsets of features including 13, 15, 18 

or 21 input parameters. Strong correlations were observed for the investigated models. The 

obtained correlation (R) values ranged from 0.71 to 0.95 for the training phase, 0.86 to 0.92 for 

the validation phase, and 0.74 to 0.89 for the testing phase. The MSE values ranged from 

0.00140 to 0.00690 for the training, 0.00128 to 0.00218 for the validation, and 0.00359 to 
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0.00848 for the testing phases. The Bold values indicate best performance across train, 

validation, and test sets in Table 14. 

Table 14 - Summary of the performance of various models 

After the hidden layer parameter sweep analysis and using the remaining parameter values close 

to GA solutions 

Scenario R 
Train. 

R 
Valid. 

R  
Test 

MSE 
Train. 

MSE 
Valid. 

MSE 
Test 

(I) 13 Features  0.9287* 0.8634 0.8906 0.00187 0.00218 0.00359 

(II) 18 Features 0.9389 0.9193 0.8332 0.00161 0.00196 0.00571 

(III) 15 Features 0.7098 0.9123 0.8092 0.00690 0.00155 0.00620 

(IV) 21 Features 0.9396 0.9086 0.8460 0.00160 0.00142 0.00511 

After a hidden neurons parameter sweep analysis using default parameters 

Scenario R 
Train. 

R 
Valid. 

R  
Test 

MSE 
Train. 

MSE 
Valid. 

MSE 
Test 

(I) 13 Features**  0.9259 0.8750 0.8861 0.00194 0.00193 0.00382 

(II) 18 Features 0.9472 0.8959 0.7410 0.00140 0.00159 0.00848 

(III) 15 Features 0.9298 0.8794 0.8846 0.00184 0.00180 0.00382 

(IV) 21 Features 0.9138 0.9175 0.8677 0.00225 0.00128 0.00424 
*Bold values indicate the best performance across train, validation and test sets 
**Selected model 

6.4 MODEL SELECTION 

The results presented in Table 14 suggest that the MLP is robust with respect to the 

parameter selection for this specific function approximation problem. Additionally, in terms of 

minimum MSE and the correlation coefficient (R), the prediction performances of the four 

models regarding their respective scenarios seem comparable. Therefore, based on Occam’s 

razor (Duda et al., 2000), i.e. the principle of parsimony, the simplest model was selected: 

Scenario I with default parameters due to the smaller validation error. In other words, given the 

requirements for proper prediction are met, it is generally recommended to select regression 
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models with a lower number of input parameters. It is also recommended to avoid dependent 

variables as input parameters to avoid multi-collinearity, unless it is proven that the incorporation 

of such features can enhance the model performance.  

Figure 9 presents the correlations between the neural network’s predictions about the 

selected model and the experimental values obtained during training, validation, and testing 

along with their respective MSEs. Figure 10 depicts the MLP prediction and the experimental 

value of the RMOE side by side for each sample. A reasonable match was obtained between the 

model predictions and the experimental values of RMOE, especially considering that the training 

data consisted of a collection of samples from technical publications (with case-by-case 

variations in experimental procedures, instruments, and conditions) with missing values that still 

needed to be estimated; yet the ANN performs reasonably well in the validation (population of 

laboratory experiments) and in the test set. This fact indicates that the MLP is an adequate 

modeling tool for this estimation problem. 
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Figure 9 - ANN model performance with 13 input parameters (Scenario I). The correlation 

coefficient between the experimental values and the ANN predictions for training (a), validation 

(b), and testing (c) is shown. The MSE during training, validation, and testing is depicted in (d) 

as a function of the training epochs (one epoch corresponds to an entire pass through the training 

data samples).  
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Figure 10 - The ANN model prediction (Scenario I with default parameters) and experimental 

data for the training (a), validation (b) and testing (c) versus their respective input indices 

(Sample ID).  
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6.5 CASE STUDY: RIGID PAVEMENT WITH MODOT REFERENCE CONCRETE 

The model will be applicable to a wide range of applications, as long as the input 

parameters are within the range of the database used for model development. Given the fact that 

transportation infrastructure is one of the main potential markets for RCA consumption, the 

selected model was employed to quantify the effect of RCA on the MOE of concrete for rigid 

pavement construction. The test scenario involved investigating the rate of variation in the MOE 

of concrete prepared with 545 lb/yd3 (323 kg/m3) of cementitious materials and 0.40 w/cm. The 

simulated mixture was made with virgin coarse aggregate with 0.8% water absorption, 4602 

lb/yd3 (2730 kg/m3) specific gravity, and 28% LA abrasion mass loss. The range of the 

investigated RCA properties were: (1) water absorption of 1.8% - 8.5%, oven-dry specific 

gravity of 3540 - 4214 lb/yd3 (2100 - 2500 kg/m3), and a replacement rate of 0 to 100% (by 

mass) for the simulation according to Scenario I. It should be noted that the mixture design and 

material properties used for case study are well within the typical criteria for rigid pavement 

construction used by state departments of transportations (Sadati and Khayat 2016). 

Figure 11 presents the effect of RCA water absorption and the replacement rate (% mass) 

on the extent of variation in the MOE based on the model investigated in Scenario I. In general, 

the results indicate a reduction in the MOE due to the use of RCA with higher water absorption. 

The rate of reduction in the MOE was limited to 10% when RCA with water absorption limited 

to 2.5% was used (even up to 100% replacement). The rates of reduction in the MOE were 10%, 

15%, and 20%, respectively, when 30%, 50%, and 100% RCA with water absorption of 4% were 

used in pavement concrete. The reduction rates were 15%, 20%, and 40%, respectively, when 

30%, 50%, and 100% RCA with water absorption of 6% were used. 
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Figure 12 presents the effect of RCA oven dry specific gravity on the rate of variation in 

the MOE at different replacement ratios (% mass). In general, a reduction in MOE was observed 

as a result of using RCA with a lower oven dry specific gravity. However, the reduction in the 

MOE was limited to 10% when RCA with an oven dry specific gravity higher than 156 lb/ft3 

(2500 kg/m3) was used. The results presented in Figure 12 indicate a 15%, 25%, and 45% 

reduction in the MOE when 30%, 50%, and 100% RCA with an oven dry specific gravity of 137 

lb/ft3 (2200 kg/m3) was used in pavement concrete. The rates of reduction in the MOE were 

15%, 20%, and 30% when 30%, 50%, and 100% RCA with an oven dry specific gravity of 143.6 

lb/ft3 (2300 kg/m3) were used. The results presented in Figure 11 and Figure 12 also revealed 

that the use of 30% and 50% RCA can lead to a reduction of up to 20% and 30% in the MOE of 

pavement concrete when low-quality RCA with an oven dry specific gravity of 131 lb/ft3 (2100 

kg/m3) and water absorption as high as 8.5% were used. 

 
Figure 11 - Effect of RCA water absorption on MOE of concrete designated for rigid pavement 

construction, Scenario I 
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Figure 12 - Effect of RCA oven dry specific gravity on MOE of concrete designated for rigid 

pavement construction, Scenario I 
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7. CONCLUSIONS AND RECOMMENDATIONS 

The test results from the study demonstrate the feasibility of using RCA and high-volume 

SCMs for the production of sustainable concrete mixtures in transportation infrastructure. This 

included the replacement of cement with at least 50% SCMs and the aggregate with 50% RCA. 

Nine optimized mixtures from the first phase of the project that exhibited satisfactory 

performance were selected for single layer and two-lift concrete pavement systems. The mixtures 

optimized for use in single layer pavement or for the top layer of two-lift concrete pavement 

exhibited 91-day compressive strength greater than 6,600 psi (45.5 MPa), 56-d flexural strength 

greater than 720 psi (5.0 MPa), 90-d drying shrinkage lower than 450 µɛ, and freeze-thaw 

durability factor of over 90%. The mixtures optimized for the bottom layer of the two-lift 

concrete pavement exhibited 91-day compressive strength greater than 7,100 psi (49.0 MPa), 56-

d flexural strength greater than 740 psi (5.1 MPa), 90-d drying shrinkage lower than 490 µɛ, and 

frost durability factor of 96%.  

Life cycle cost assessment indicated that sustainable concrete with optimal SCMs and 

RCA content can lead to cost savings of 17.6% of agency costs, 12.1% of user cost, 12.1% of 

social cost, and 17.5% of total life cycle cost. 

Given the variability of the properties of RCA and its effect on mechanical properties, the 

water absorption, specific gravity, and LA abrasion mass loss of RCA were found to be effective 

means to classify RCA sources. Lowering the water absorption and LA abrasion mass loss 

values and increasing the oven dry specific gravity of RCA can lead to higher quality of the 

aggregate and greater mechanical properties of the concrete made with such RCA. 

The data obtained through the case study indicate that the reduction in the MOE of 

pavement concrete can be limited to 10% when the coarse RCA with water absorption lower 
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than 2.5%, LA abrasion less than 23%, or oven dry specific gravity higher than 156 lb/ft3 (2500 

kg/m3) is used, even at a full replacement rate. The use of 30% and 50% RCA can lead to a 

reduction of up to 20% and 30% in the MOE of pavement concrete, respectively, when a 

relatively low-quality RCA is selected that has an oven dry specific gravity of 131 lb/ft3 (2100 

kg/m3) and a water absorption as high as 8.5%.  
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